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a b s t r a c t

In this paper, we present an in-vehicle computing system capable of localizing lane markings and commu-

nicating them to drivers. To the best of our knowledge, this is the first system that combines the Maximally

Stable Extremal Region (MSER) technique with the Hough transform to detect and recognize lane markings

(i.e., lines and pictograms). Our system begins by localizing the region of interest using the MSER technique. A

three-stage refinement computing algorithm is then introduced to enhance the results of MSER and to filter

out undesirable information such as trees and vehicles. To achieve the requirements of real-time systems,

the Progressive Probabilistic Hough Transform (PPHT) is used in the detection stage to detect line markings.

Next, the recognition of the color and the form of line markings is performed; this it is based on the results

of the application of the MSER to left and right line markings. The recognition of High-Occupancy Vehicle

pictograms is performed using a new algorithm, based on the results of MSER regions. In the tracking stage,

Kalman filter is used to track both ends of each detected line marking. Several experiments are conducted to

show the efficiency of our system.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Lane marking localization and tracking is an important compo-

nent of in-vehicle computing systems. Lane marking localization and

tracking systems have attracted an extensive amount of interest from

both academia and the automobile industry. Many architectural and

commercial systems have been proposed in the literature, for ex-

ample [1–3]. Lane marking recognition systems, conversely, have re-

ceived surprisingly little attention. Lane marking such as lines and

pictograms, are important tools for communicating regulations and

guidelines in order to keep vehicles in the correct lanes.

In this paper, we present a real-time lane marking localization

and communication system able to detect, recognize and track pave-

ment markings. To the best of our knowledge, this is the first sys-

tem that combines Maximally Stable Extremal Region (MSER) with

Hough transform to detect and recognize lane markings. Not only

does our architecture take advantage of the MSER features of road im-

ages, it also refines MSER regions so that MSER fits better with Hough

transform. In this paper, lane markings and pavement markings

are used interchangeably to designate line and pictogram markings.

Line markings are used to indicate a well-defined category of lane
∗ Corresponding author. Tel.: +16132162452.

E-mail addresses: amammeri@uottawa.ca (A. Mammeri), boukerch@site.uottawa.
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arkings, i.e., solid or dashed lines that are yellow or white. On

he other hand, pictogram markings mean ideograms which convey

essages as understandable graphics to drivers, for example High-

ccupancy Vehicle (HOV) lanes, or as pictures.

Our system consists of the following stages: preprocessing, detec-

ion, recognition, and tracking using Kalman Filter. This framework

s distinguished from our predecessors by the following: (1) The

omputation of the detection stage is carried out using texture

nformation, which is generated by MSER. In contrast to traditional

omputing methods, MSER feeds more effective and stable lane

arking information to Hough transform by exclusively recogniz-

ng stable extremal regions. A three-stage refinement algorithm is

hen introduced to enhance the results of MSER and to filter out

ndesirable information such as trees and vehicles. We begin by

omputing the Minimum Bounding Rectangle (MBR) of all MSER

egions. We then use a heuristic based on the dimensions of MBRs to

lter out non-line-marking blobs. Finally, we use a scanning method

o localize lane marking edges. (2) To achieve the requirements of

eal-time systems, the Progressive Probabilistic Hough Transform

PPHT) is used in the detection stage. Compared to Hough transform,

hich returns the parameters ρ and θ , PPHT returns two end-points

f the detected line-markings. (3) The recognition of line markings

s performed in HSV color space to better distinguish between white

nd yellow colors; it is based on the result of the application of

SER to left and right markings. The recognition of HOV signs is

ased on the results of MSER regions. We develop an algorithm that
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lters out unwanted objects and retains HOV signs. (4) We have

sed Kalman filter in the tracking stage to track both ends of each

etected line-marking instead of tracking the parameters (ρ , θ ) of

ough transform as done in many research papers, e.g., [4]. The main

eason of using Kalman filter to track both ends of each detected

ine-marking is that it has much lower computational requirements,

hich fits perfectly with the real-time constraints of our system.

Our paper is structured as follows. In Section 2, we summarize

nd reference the related works for our research. In Section 3, we de-

cribe the preprocessing stage used by our System. We then refine in

ection 4 the results of the last stage using our refinement procedure.

ext, we present in Section 5 the detection algorithm adopted by our

ystem. Then, in Sections 6 and 7 we described the recognition strat-

gy and the tracking filter used by our system. Several experiments

re conducted in Section 8, and we conclude our paper and present

ur future work in Section 9.

. Related work

To detect and track pavement markings, most lane detection and

racking systems adopt the following architecture: preprocessing, de-

ection, and tracking [5–7]. In this section, we review some important

apers regarding these stages.

re-processing. The purpose of this stage is to enhance input frames

n order to increase the likelihood of the successful delivery of ar-

as with useful information to subsequent stages [6]. In other words,

t allows the extraction of the region of interest (ROI) that contains

avement markings, in order to reduce the computational cost. To

et the ROI, three main approaches are used: vanishing point detec-

ion, perspective analysis and projective model, and sub-sampling.

anishing point detection technique is used to determine the ROI in

any papers, such as in [2,8,9]. However, this has some strict limita-

ions related to the vanishing points in the image, i.e., straight lanes

ith constant vanishing points. The second approach, i.e., perspec-

ive analysis and projective model, is based on the fact that parallel

ane markings in the real world plane intersect at a vanishing point

n the image plane. Usually, by analyzing the perspective effect, the

etection range can be focused on a certain area, which can be ROI.

ith a reasonable projection applied between the image plane, the

eal world plane and the camera plane, the ROI can be extracted. For

nstance, RALPH (Rapidly Adapting Lateral Position Handler [10]) con-

tructed a very basic projection model to obtain ROI. In [11], a projec-

ion model is constructed based on a 2D lane geometric model, which

lso helps estimate lane model parameters and lane model matching

or the refinement stage. Sub-sampling is the third approach used to

etermine the ROI, as performed in [12,13], in which a predefined or

daptive percentage of the image can be used to determine the size

f ROI.

After the generation of ROI, inverse perspective mapping (IPM) is

sually deployed on the extracted area. IPM is used to transform an

mage from a real world plane to a birds-eye-view in order to ob-

ain the desired line candidates straight and parallel, (e.g., [6,14–16]).

oreover, unwanted regions are removed because the remapped im-

ge focuses only on the road surface. Segmentation techniques are

lso used to enhance edges of lane markings and remove excess un-

esirable blobs. To prepare images for the detection stage, segmen-

ation is used to extract certain features from the input image. Color

17], blobs [18] and edge [19] are three main features which are con-

idered for lane detection segmentation.

etection. After preprocessing, detection is used to extract lane

arkings from the ROI using feature extraction methods and re-

nement approaches. Three main feature extraction approaches are

ound in the literature: edge-based methods, color-based methods

nd hybrid (edge and color) methods.
Edge-based methods: The Hough transform is the most commonly

echnique used to detect lines [19]. However, two drawbacks are re-

orted: high false positive rate and computational complexity [20].

o cope with the high false positive rate, probabilistic Hough trans-

orm [17,19] and adaptive random Hough transform [6,7] are em-

loyed. Apart from Hough transform and its variants, another edge-

ased method based on Steerable filter is applied in many research

apers such as in [5,16,21,22]. This method yields good results when

oad markings are clearly painted and consistently smooth. However,

teerable filter does not adapt to heavy traffic where the orientation

f lane markings are not always dominant in all directions.

Color-based methods: Unlike edge-based methods, color-based

ethods are not widely used by researchers, because they are influ-

nced by lightning. The authors in [23] use a color-based method in

he HIS color space by computing the cylindrical distribution of color

eatures.

Hybrid methods: Color and shape information has been used to

vercome the drawbacks of color-based and edge-based methods.

hese types of techniques usually combine width, length, and loca-

ion of lines with gray levels and brightness values of pixels, which

mproves the extraction results [24].

racking. To facilitate following of line markings over time, a track-

ng stage is usually incorporated. The aim of the tracking stage is

he prediction of future line marking positions in the image, and

he decrease of false detection. The most common trackers used in

ane tracking systems are Kalman and Particle filters. The parameters

f Hough transform have previously been tracked using variants of

alman Filter, such as Extended Kalman Filter used in [25].

. Pre-processing

Based on the detection scheme proposed in [26], a line marking

ocalization, recognition and tracking system is proposed in this pa-

er. Our system is composed of a pre-processing stage based on MSER

omputation (Section 3), a detection stage using an improved version

f Hough transform (Progressive Probabilistic Hough Transform, out-

ined in Section 5), a recognition stage that identifies lines and pic-

ogram markings (Section 6) using computational geometry, and a

racking stage using Kalman filter (Section 7).

The purpose of the pre-processing stage is to generate a binarized

icture, which contains the desired line information while effectively

educing unwanted information. To the best of our knowledge, the

ost common method for solving the above problem is to use seg-

entation based on edge and area information. The key in select-

ng suitable segmentation methods for line marking detection is to

etain line marking pixels while weakening unwanted pixels. Many

ifferent masks (e.g., Canny, Sobel or Prewitt) are used to be con-

olved with gray images. Only a few of them use blob-extraction-

ased methods (e.g., MSER) to extract desired pixels (e.g. [26]). To

elect the best segmentation method, comparative experiments have

een conducted in [26], focusing on MSER segmentation and edge

egmentation.

.1. Edge-based segmentation

Edge-based segmentation is usually performed on the ROI in gray

cale to enhance edges and to obtain pixels that belong to the de-

ired lane markings. Region of interest is always mandatory for edge-

ased segmentation. Different methods have been used to extract the

OI from the target frame, as performed in [3]. In fact, input images

ontain lane markings and some unwanted objects such as electrical

oles, pedestrians, trees and cars. In order to reduce undesirable ob-

ects which might affect the system results, the detection area should

e focused only on the road surface.
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After obtaining ROI, some classical segmentation methods (for ex-

ample Sobel, Prewitt, Robert or Canny filters) can be used to detect

edge information. It is well known that Canny’s operator outperforms

other operators such as Sobel in the general edge detection problem.

However, the authors in [27] have revealed that, for the purpose of

lane detection, Canny filter is very sensitive to irrelevant objects as

well as lane markings, which rapidly increases the number of false

positives. The Canny operator is also computationally expensive com-

pared to other edge detection algorithms. Conversely, the Sobel oper-

ator is less sensitive to noise and less complex than Canny, and it is

able to detect the main markings. Hence Sobel is selected as the edge

segmentation method to compete with MSER algorithm in [26].

3.2. MSER-based segmentation

One effective area-based segmentation method is Maximally Sta-

ble Extremal Region (MSER), which was proposed in [28] and has

rarely been used in lane detection. In [18], Sun et al. proposed a

method which consists of describing MSER patches using SIFT-based

descriptors, followed by a graphical model to localize lane markings.

In contrast to [18], which involves an unsupervised learning algo-

rithm and off-line training, our proposed system directly takes ad-

vantage of MSER blobs to extract the features of lane markings (lines

and pictograms). In addition, our proposed method uses MSER results

to set the ROI for detection stage, allows the improvement of MSER

and Hough transform results, and increases the detection rate of lane

markings.

3.2.1. Background on MSER

For a gray image I which can be described as a mapping: (x, y) ∈
Z2 → L, where Z2 represents a set of pixels with coordinates (x, y),

and L represents a set of luminance of pixels ranges that vary from 0

to 255. The term region we used here represents a contiguous subset

S of the space Z2 (specifically for 4-neighbourhoods) which satisfied:

∀ p, q ∈ S; p, q �= ∅; ∃ series {p, a1, a2, a3, … ,ai−1, ai,q}, where a1, a2,

a3, … ,ai−1, ai ∈ S, s.t.|p − a1| = 1, |ai − q| = 1,
∑i

j=2 |aj-a j−1| = i − 1.

A region S is called an extremal region when an arbitrary element

in the region satisfies the mapping rule S → m ≤ l; where m, l ∈ L, m

represents the mapped value in L of an arbitrary element in S, and l is

a pre-defined threshold which ranges in [0; 255]. A stable extremal

region is an extremal region S that does not change a lot while varies.

Let:

R(Sl) = {Sl, Sl+1, Sl+2, . . . , Sl+�−1, Sl+�} (1)

be a branch of trees rooted in Sl and satisfied: Sl ⊂ Sl+1 ⊂ Sl+2 ⊂ · · · ⊂
Sl+�−1 ⊂ Sl+�.

In order to measure the stability of different extremal region, we

use the following equation (as proposed in [28]):

q(l) = card(Sl+� − Sl)

card(Sl)
(2)

where card(Sl) represents the cardinality of a set S (one extremal re-

gion). An extremal region Sl can be chosen as a stable extremal re-

gion only in case when q(l) of Sl is in the lower level among the en-

tire extremal regions. For certain � ∈ L, Maximally Stable Extremal

Region can be obtained by choosing the stable extremal region with

the smallest q(l) of all stable extremal regions.

As stated above, researchers have employed various methods to

attempt to extract the edge information of ROI. Additionally, they

tend to use smooth methods (Gaussian Filter, Median Filters, etc.) be-

fore edge detection to remove unwanted information, blur the differ-

ence inside the region and keep regions with stable luminance. This

can result in the omission of details, especially in the edges of regions

where luminance changes rapidly. To balance between keeping de-

sired details and removing annoying information, we use MSER for

the pre-processing stage. Compared to edge-based segmentation, the
iggest advantage of MSER is that it only recognizes the stable ex-

remal region (e.g., lane markings, traffic signs or dark parts of cars),

nd successfully ignores unpredicted undesirable regions (e.g., pot-

oles and obstacles on the road). A fact that must be noted is that

SER is however more computationally expensive than edge-based

etectors. Moreover, sometimes, MSER-blobs contain unwanted de-

ails as well as desired pixels (as shown in Figs. 4 and 5). This makes it

ecessary to refine the results of MSER. In order to improve the time

fficiency of the entire system, and based on the scanning method

roposed in [26], a novel refinement scheme is proposed in Section 4.

. Refinement of MSER results

Recall that the recognition system proposed in this paper does

ot only recognize the line markings, but also recognizes pictogram

arkings (HOV painted on road surface). To keep the details of

ine and pictogram markings while eliminating annoying data, three

tages are used:

1. Finding the Minimum Bounding Rectangle (MBR) of all MSER

blobs within input frames;

2. Using the length-width ratio of each MBR to filter out non-line-

marking blobs;

3. Using the scanning method shown in Algorithm [26] to locate line

marking edges.

Stages 1 and 2 aim at selecting blobs with similar shapes to line

arking blobs (based on the length-width ratio). Stage 3 is used to

educe the input pixels in the next detection stage by creating a one-

ixel-width edge for line marking blobs.

.1. Finding Minimum Bounding Rectangles

Minimum Bounding Rectangle (MBR) is the 2-dimensional form of

inimum Bounding Box, and is defined as the smallest rectangle that

ontains every point within a given blob [29]. MBR is used in our work

o envelop wanted regions (blobs of line and pictogram markings)

ocated inside lanes, as well as unwanted blobs outside lanes. Un-

anted blobs are then filter out. Specifically, according to the width-

ength of each rectangle, we can select appropriate blobs. As a result,

ectangles of the minimum area enclosing each input (blobs) must

e produced. Figs. 1 and 2 demonstrate the process of generating

n MBR. First, for each blob generated previously (Fig. 1), we draw

bounding rectangle which envelops the current blob, and shrink its

oundaries until they meet the edge of the contour of the blob (as

hown in Fig. 1); then, we record the new rectangle (red rectangle in

ig. 2). Second, we rotate the bounding rectangle by an angle of 10

egrees, and shrink again following the same procedure performed

reviously. We repeat this process for each angle, increasing by 10 de-

rees; in this way, we cover the entire 360 degree plan. From the 36

ounding rectangles that have been generated, we select the small-

st one that contains every point in the blob, and we eliminate rect-

ngles that do not contain all blobs pixels (which might be smaller

han the blob and does not contain all of its pixels). This Algorithm is

erformed for all blobs found in the previous step.

.2. Length-width ratio

After MBR-stage, some rectangles enveloping blobs are generated.

he length-width ratio of each MBR is then calculated. It is commonly

nown that line markings are usually much slimmer than other ob-

ects (as shown in Fig. 3). In other words, it is easier to extract road

ines from blobs, which have an exclusively large length-width ratio.

mpirically, we found that the length of a line marking rectangle is

sually more than twice the length of its width. This can be used to

ifferentiate the potential line blobs from other objects. During our

xperiments, we notice that some other slim objects (e.g. trees and
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Fig. 1. The shrinking process used to generate a Minimum Bounding Rectangle: step 1

begins at the top of a rectangular box and continues until it reaches an edge point of the

closed region; steps 2 and 3 start from the left and right sides, respectively, until edge

points are met; step 4 begins at the bottom and stops when edge points are reached.

Fig. 2. Shrunken rectangles for every rotation. The rotation increment is 10 degrees.
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Fig. 3. The length of a line marking rectangle should be more than twice the width.

(a)

(b)

Fig. 4. The scanning method. Red dash line in (Top) and (Bottom) in the middle indi-

cates the “middle column” of the ROI, while dash arrows in (Top) indicate the scanning

direction of left and right areas divided by middle column. For every row of each area,

the scanning process stops when the first white pixel is reached by the arrow. Red solid

lines depicts the entire contour after refinement. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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lectrical poles in Fig. 3) can be erroneously extracted as line marking

lobs. To address this, a scanning method called MSER Refinement is

pplied afterwards to exclude those slim outliers.

.3. MSER refinement

Empirically, we find that MSER-blobs contain considerable annoy-

ng details as well as desired pixels, as shown in Fig. 4. This makes

t necessary to refine the results of MSER segmentation stage. Based

n the fact that the number of objects located between the left and

ight line markings are lower than those outside the line markings

as shown in Fig. 4), it is reasonable to say that line marking blobs

re located near the middle column (as the red dash line in Fig. 4)

ompared to other blobs located outside lane boundaries. As a usual

act, areas between line markings are mainly road surface, which has

ery weak luminance compared to other objects in gray scale im-

ges. Since MSER only extracts the stable extremal region, undesir-

ble points within left and right line markings can be eliminated from

SER-blobs. This is different from edge detection that extracts fea-

ures of both stable extremal regions and unwanted regions.
Hence, we propose a scanning method for the binarized picture as

escribed in Algorithm 1. Starting from the middle pixel of each row,

canning is performed in left and right directions, respectively. MSER

lobs are drawn in white, while the non-MSER area is kept black. The

canning of each image row stops when we find the first white pixel

n left and right areas, respectively. The output of the proposed scan-

ing method is MSER blobs shrunken into pieces of lines, which are

ctually partial contours of MSER blobs (as shown as Fig. 4). More

mportantly, because the scanning process starts from the middle col-

mn, these contours only belong to blobs that are close to the middle

olumn in left and right areas. To the most extent, this method ac-

ually depicts the contours of line-marking-blobs which are near to

iddle column. Moreover, the proposed scanning rule results in se-

ected contours that are one pixel in width, which weakens annoying

lobs and makes long lines more easily recognized by Hough trans-

orm. However, the proposed scanning method has two drawbacks.

First, even though annoying points within areas between left and

ight line markings can hardly form MSER-blobs, real scenarios occa-

ionally have MSER-blobs located between left and right line mark-

ngs (coming from cars or an area of erosion on the road, as shown
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Algorithm 1: Scanning Refinement of MSER.

1 Input:Binarized images with MSER blobs

2 Output:Refined contours of MSER blobs

3 x and y: coordinates of a pixel point (x, y) in the binarized

image

4 width and height: the width and height of binarized image

5 P(x, y): pixel value of the point (x, y)

6 if Scanning for left area then

7 for y = 0 to height do

8 for x = width
2 to 0 do

9 if P(x, y)! = 0 then

10 x − − ;

11 continue;

12 else

13 y + +;

14 break;

15 else

16 for y = 0 to height do

17 for x = width
2 + 1 to width do

18 if P(x, y)! = 0 then

19 x + + ;

20 continue;

21 else

22 y + + ;

23 break;

Fig. 5. Drawbacks of the proposed scanning rule: blobs between line markings and

outside the current lane.
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as red circular area in Fig. 5). Our proposed scanning method might

inevitably take the contour of those annoying blobs as line marking

candidates, and then feed those pixels together with real line mark-

ing pixels to PPHT. To eliminate unwanted blobs, as shown in Fig. 4,

we proceed as follows. We know that the scanning method only se-

lects at most two pixels in a row (one pixel per area), which results

in selected line candidates that are only one pixel in width. This dra-

matically weakens the contour of annoying blobs between line mark-

ings, and makes the continuous contours of line marking blobs more

prominent. On the other hand, PPHT can further remove the contours

of MSER-blobs by thresholding length and angle of detected line seg-

ments (see Section 5).

The second drawback of the proposed scanning method is that, for

dashed lines, blobs outside line boundaries (described as a red ellipse
rea in Fig. 5) have white pixels in rows between dashes. This might

ring annoying contours for those rows. Experimentally, we find that

PHT can handle the above issues by thresholding the length and an-

les of line candidates, as shown by Eq. 4 and described in further

etail at the end of Section 5. That is, by an appropriate threshold-

ng, lines located in irrelevant regions can hardly be selected as line

arkings.

. Line markings detection using PPHT

After the refinement stage, binary edge maps are produced with

efined one-pixel-width line candidates. PPHT is used as the line de-

ection technique in this stage. Hough transform (HT) was proposed

n [30] and is usually used to detect lines and circles; it has been used

s the core method of lane marking detection in [3] and [31]. The core

ormula of HT is

= xcos(θ) + ysin(θ) (3)

is the length between the origin and the pedal of detected line and

is the angle of its perpendicular line.

In [32], Matas et al. proposed the PPHT, which has been commonly

ccepted as one of the best line detection methods based on Hought

ransform theory. The algorithm PPHT proceeds as follows:

1. Randomly, select a new point for voting in the accumulator array,

with contributions to all available bins (as referenced in [32], bin

stands for a pair of (λ, θ )). Then remove the selected pixel from

the input image.

2. Check if the highest peak (the pair of (λ, θ ) with the most voting

points) in the updated accumulator is greater than a pre-defined

threshold th(N). If not then go to Step 1.

3. Find all lines with the parameter (λ, θ ) which was specified by the

peak in Step 2. Choose the longest segment (which can be denoted

by starting point Pt0 and ending point Pt1) of all lines.

4. Remove all the points of the longest line from the input image.

5. Remove all the points of the selected line in Step 3 (Pt0 − Pt1)

from the accumulator, which means those points do not attend

any other voting process.

6. If the selected segment is longer than a pre-defined minimum

length, then take the segment (Pt0 − Pt1) as one of the output

results.

7. Go to Step 1.

As we can see from Eq. (3), HT returns (λ, θ ) of every detected line

nd takes all straight lines into account, which makes it time consum-

ng and too sensitive to straight lines (regardless of some undesirable

ines with short length) and generates undesired marking candidates.

n this paper, PPHT is employed instead of HT in order to cope with

he above problem and to minimize computation costs. Hough trans-

orm also consumes much more time than PPHT in order to present

ll lines. From our experiments, we have realized that HT usually re-

urns 10–20 lines while PPHT returns 5–10 as shown in Fig. 6. Ap-

roximately, we can say that PPHT can save around half computation

ost of HT (Fig. 6). As explained in [32], PPHT improves the process of

T by minimizing the number of voting pixels.

In addition, lane detection has its own requirements; the detec-

or should only respond to lines with specific characteristics (with

he same shape as lane markings). Recalling the two drawbacks in

ection 4.3 (as shown in Fig. 5), sometimes vehicles or contours of

urroundings appearing in the region of interest can be erroneously

etected by HT. These lines not only bring a variety of directions but

lso have shorter lengths compared to real lane markings, hence are

ot eligible to be chosen as lane marking candidates. In PPHT, con-

traints can be given by setting a minimum line length, which only

akes lines with qualified length as output. Besides, we can remove
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Fig. 6. Left: the detection of lane markings using HT. Note the detection of noisy line information; Right: the detection of lane markings using PPHT.
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ines with annoying angles by applying the following constraints:

1 ≤
∣∣∣y1 − y0

x1 − x0

∣∣∣ ≤ T2 (4)

here T1 and T2 are the pre-defined thresholds set by users to de-

ne the angle values, and (x0, y0) and (x1, y1) are the coordinates

f end-points Pt0 and Pt1, respectively. Considering the height of our

ashboard-camera from the ground and its resolution 640 × 480, the

hreshold range is defined experimentally, and it is set to 0.2 for T1

nd 10 T2. These values mean that the angel between lines and the

riving orientation should be set approximately between 10 and 85

egrees.

. Lane marking recognition

Road surface markings are used to provide appropriate informa-

ion to drivers and pedestrians, for instance lines and pictograms.

pictogram marking is a well-designed ideogram which conveys a

essage as an understandable graphic, for example HOV signs. Line

arkings separate between lanes, and are used to manage traffic by

uiding vehicles to avoid collisions. This is achieved by exploiting

oth the color (white or yellow) and the form (solid or dashed) of the

ine markings. For example, a yellow color of a line infers that this

ine is used to separate a road into two lanes of opposite directions.

n this system, we propose an algorithm that recognizes and distin-

uishes between line markings’ forms and colors. Based on the results

f Section 5, we proposed a line recognition method which recognizes

ine markings with different colors and forms. A parallelogram must

e constructed based on the starting and ending points of PPHT (as

hown in Fig. 7), for left and right line markings, respectively. Edge

oints of lane markings can be included by the parallelogram.

.1. Yellow and white lines

It is commonly known that yellow and white line markings are

ometimes confusing. This is due to the irregular textures of road

urfaces, environmental conditions (such as sunlight), daytime and

ther complex factors. Thus, the boundary between yellow and white

s not always easily defined, particularly when using RGB color space.

n our context, the problem lies mostly in how to distinguish yellow

nd white for pavement markings, even they do not clearly contrast

ith each other in real scenarios. In fact, the selection of the appropri-

te color space is of high importance, because it affects the detection

esults. Empirically, we found that line markings are painted in colors

hich are more distinguishable in HSV than in RGB color space. That

s, in our work, each frame is first converted from RGB to HSV color

pace. Specifically, R, G, and B are converted to the floating-point for-

at and scaled to fit the 0 to 1 range. For each point candidate in the

arallelogram range in Fig. 7(b), its RGB value can be obtained from
riginal frames taken by cameras. With the following equations, RGB

alue can be converted into HSV value:

= max(R, G, B); (5)

=
{

V − min(R, G, B)

V
if V �= 0

0 otherwise

(6)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

60(G − B)

V − min(R, G, B)
if V = R

120 + 60(B − R)

V − min(R, G, B)
if V = G

240 + 60(R − G)

V − min(R, G, B)
if V = B

(7)

f H < 0, then H = H + 360. The final range of (H, S, V) is

≤ V ≤ 1; 0 ≤ S ≤ 1; 0 ≤ H ≤ 360

or a pixel point, if

S > 0.2

and

> 0.4 (8)

his pixel can be deemed as yellow, otherwise it is white.

.2. Solid and dashed lines

Recognizing the form (solid or dashed) of a lane marking is a chal-

enging task for driver assistance systems. The recognition of such

arkings depends on the vehicle’s speed, the condition of the pave-

ent, the surrounding environment, and time (night and day). An

xample of an unwanted scenario is when a solid line marking on an

roded surface is recognized as a dashed marking. Shadows of any

bject on the road can have a similar effect. Moreover, a lack of mark-

ng pixels may result in a missed detection of a line marking. In or-

er to deal with these situations and to avoid erroneous recognitions,

e develop a module that recognizes line markings. It has been ex-

erimentally proved that a parallelogram area with more than 170

arking pixels is likely to contain a solid line, otherwise it contains a

ashed line. As shown in Fig. 7, seeing from the two parallelograms

ased on starting and ending points detected by PPHT, dashed lines

nd solid lines can be obviously distinguished with different numbers

f marking pixels.

.3. Pictogram marking recognition

In this paper, we develop an algorithm that recognizes HOV signs.

ther pavement signs are left to our future work. HOV lanes, also
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(a)

(b)

The total  number of 
Pixels is greater than 
170

The total  number of 
Pixels is less than 170

Fig. 7. (a) Is the lane markings detected by PPHT, with starting and ending points; (b) shows the parallelogram area constructed based on the position of starting and ending points.
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known as carpool lanes or diamond lanes, are traffic lanes reserved

for vehicles with a specified number of occupants, at specified hours.

Their aim is to decrease traffic congestion by increasing person

throughput. To detect HOV signs, we proceed as follows. The previ-

ously detected and recognized line markings are used to keep MSER

regions located between line markings, which contain, among others,

HOV signs, and remove outside regions. First, we extend line mark-

ings to reach the bottom of the ROI. In practice, each line is a thick

line constituted by a set of contiguous geometrical lines. Only those

lines (noted lr and lf) that are closest to the middle line of the lane

are kept; these are to narrow the detection range. Second, for each

labeled MSER region, we verify whether its coordinates are located

between lr and lf. This is performed by comparing the coordinates

(xRi
, yRi

) of a randomly selected point from each MSER region Ri lo-

cated between lr and lf to the coordinates’ positions of lr and lf. If

(xRi
, yRi

) is located inside the area between lr and lf, Ri is selected as

a candidate region which possibly contains HOV sign; otherwise, it is

removed. After the completion of this step, we observed some unde-

sirable blobs. To filter them out, we have decided to adopt a heuristic

approach based on the dimensions and colors of the blobs. The neces-

sary dimensions were determined manually by observing the dimen-

sions of blobs. Larger blobs which may represent vehicles or trucks

are filtered out. As most HOV signs are white, only white blobs are

kept.

In some challenging situations, more than one marking is found

on the lane. In order to deal with this issue, we traverse all contour

points and find out the top, bottom, leftmost, and rightmost points.

Since, we have already obtained these points, the line linking the top

and bottom points should be vertical to the line connecting the left-

most and rightmost points. Also, the orientation of the line linking

top and bottom points should point to the vanishing point. If a given

region satisfies these requirements, we regard this sign as an HOV

sign.

7. Tracking of lane markings

It is well known that the addition of a lane tracking stage after

lane detection increases the probability of detecting lane markings,

especially in harsh conditions (e.g., rough and rural roads or rainy

weather). The most common lane trackers used in the literature are

Kalman and Particle filters. Kalman is used to predict the post state

based on the previous state and current measurements by updating

their covariance matrix. This process is then looped by feeding the
orrected state to the next instance. In fact, Kalman Filter has been

sed to track (λ, θ ) of Hough transform [26]. In this paper, Kalman

lter is used to track both ends of each lane markings, because we

ave used PPHT in detection.

We construct two Kalman trackers for right and left lane markings.

or the end-points Pt0 and Pt1 of a given segment, the state vector Xk

s:

k = AXk−1 + BUk (9)

here A is the state updating matrix and B is the input control matrix.

n this case, we define the state

= [XPt0
YPt0

XPt1
YPt1

X ′
Pt0

Y ′
Pt0

X ′
Pt1

Y ′
Pt1

]T (10)

here X′ and Y′ are the first derivatives of X and Y, respectively. Exper-

mentally, with the best tracking performance for our testing video,

e define the state updating matrix as following:

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0.5 0 0 0
0 1 0 0 0 0.5 0 0

0 0 1 0 0 0 0.5 0

0 0 0 1 0 0 0 0.5

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k = 0 (11)

e take the detected coordinates of Pt0 and Pt1 as measurement Zk

or every frame, where Z is given by:

= [XPt0
YPt0

XPt1
YPt1

]T (12)

A is the transition 8 × 8 matrix bringing state X from time k − 1

o k. A models the evolution of the state when no input is applied. If

e consider a simplified model (low velocity and high frame rate) A

ould be equal to I. From Eqs. 10 and 11, the estimated value X̂ of X
k k



A. Mammeri et al. / Computer Communications 73 (2016) 132–143 139

Table 1

Video clips used for experiment. (D: dashed; W: white; S: solid; Y: yellow).

Clip #1 Clip #2 Clip #3 Clip #4 Clip #5 Clip #6

Lighting Cloudy Sunny Sunny Cloudy Night Night

Location Highway Urban Highway Urban Urban Urban

Traffic Heavy Light Medium Light to heavy Heavy Medium

Road surface Rough Smooth Smooth Smth-Rough Smooth Rough

Frame NO. 912 864 1080 960 1200 1043

Frame speed 24fps 24fps 24fps 24fps 24fps 24fps

Markings/Frame 2 1 2 2 2 2 or 1

Line type DW SY DW-SW DW-SY DW DW-SY

Fig. 8. Correct detection in different scenarios: (a) urban area: curvy line marking occluded with cars; (b) urban area: single line marking; (c) urban area: heavy traffic with strong

lighting; (d) urban area: medium traffic; (e) urban area: medium traffic, sunny, rough and shadowy road; (f) urban area: rough road with heavy traffic, cloudy; (g) highway: slope

and curvy lane; (h) highway: different road color, heavy traffic.
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s given by:

k̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XPt0
+ 0.5X ′

Pt0

YPt0
+ 0.5Y ′

Pt0

XPt1
+ 0.5X ′

Pt1

YPt1
+ 0.5Y ′

Pt1

X ′
Pt0

Y ′
Pt0

X ′
Pt1

Y ′
Pt1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
hich implies the following:

X̂Pt0(k|k−1)
= X̂Pt0(k−1|k−1)

+ 0.5X̂ ′
Pt0(k−1|k−1)

ŶPt0(k|k−1)
= ŶPt0(k−1|k−1)

+ 0.5Ŷ ′
Pt0(k−1|k−1)

X̂Pt1(k|k−1)
= X̂Pt1(k−1|k−1)

+ 0.5X̂ ′
Pt1(k−1|k−1)

ŶPt1(k|k−1)
= ŶPt1(k−1|k−1)

+ 0.5Ŷ ′
Pt1(k−1|k−1)̂ and Ŷ represent the estimated values of X and Y, respectively. In

rder to meet the velocity direction between two measured points,

he weights of X̂ and Ŷ should be set to the same value (0.5 in our

ase). Experimentally, we found that 0.5 is the best value that satisfies

racking performance of our system.

. Experiment

Our experiment focuses on the performance evaluation of the pro-

osed system. To test the real-time performance of our proposed sys-

em, several videos were taken from Ottawa roads, using a FL3 − U3 −
3S2C − CS camera mounted in the front of an experimental car and

xed at a height of 1.3 m above the ground. The program was imple-

ented in C++ under Windows using the OpenCV library, with the
ardware environment of Intel core i3 CPU having 2.30 GHz and 4G

AM. Of particular note is the resizing of our original images (with

esolutions of 640 × 480) into 640 × 240 before the use of MSER, in

rder to improve time efficiency. This resizing does not influence the

nal experimental results.

Video clips taken from downtown and highway areas in Ottawa

epresent most real driving scenarios during the night and day. These

ideos represent some common situations with different lighting

onditions (sunny, cloudy and night), traffic (heavy, medium and

ight), and road surface (rough and smooth), which people might en-

ounter in real life. Some of the videos were listed in detail; see ex-

mples in Table 1.

We perform several experiments to evaluate the efficiency and ac-

uracy of our system. The evaluation of each method is performed us-

ng metrics as explained in Sections 8.1 and 8.2. Fig. 8 shows frames

ith correct detection of line markings. These pictures show that our

roposed system performs acceptably well in different real scenarios.

.1. Line marking detection performance evaluation

For the purpose of detection performance evaluation, two met-

ics are used: False Positive Rate (FPR) and False Negative Rate (FNR).

alse Positive (FP) and False Negative (FN) considers the presence or

bsence of lane markings. FPR refers to the probability of falsely se-

ecting a given object or contours such as vehicles, curbs, trees or

lectrical poles, as a lane marking. On the other hand, FNR refers to

he situation when a lane marking is falsely rejected by the detection

ethod.

Three methods are considered and implemented for comparative

valuation: method (a), method (b) and our method called (c). The

ethod (a) uses an edge-segmentation method based on Sobel filter,

ollowed by PPHT to detect line markings. Whereas the method (b)

ses MSER segmentation without refinement, followed by PPHT. The

eason behind this choice is to show the accuracy and efficiency of our
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Fig. 9. Detection performance of edge-based, MSER-based and the proposed refined MSER-based segmentation methods. Images (a), (d) and (g) represent the same frame taken

from Clip #1. Images (b), (e) and (h) are the segmentation results of edge-based, MSER-based and refined MSER-based methods, respectively. Images (c), (f) and (i) are the results

of the application of PPHT after edge-based, MSER-based and refined MSER-based methods, respectively.

Table 2

Edge segmentation for line markings detection.

Process-time No. markings TPR (% ) FPR (%)

Robert 26 ms 582 66 31

Canny 94.5 ms 788 87 44

Prewitt 48.3 ms 812 90 45

Sobel 32.3 ms 609 92 9.5

Table 3

Comparative performance evaluation in (%) for line marking

detection at night.

Clip #5 Clip #6

DR FPR FNR DR FPR FNR

Met. (a) 57.8 1 42.2 64.1 0 35.9

Met. (b) 74 14.8 26 80.6 9.7 19.4

Met. (c) 77.6 7.1 22.4 83.3 4.5 16.7
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method (c) (which refines method (b)) against edge-based methods,

and against MSER-based segmentation without refinement.

Fig. 9 clearly shows that the refined MSER Segmentation (Fig. 9(i))

keeps desired details (line markings) and removes some details (e.g.,

cars, trees and curbs), when compared with edge segmentation

(Fig. 9(c)) and MSER segmentation without refinement (Fig. 9(f)).

8.1.1. Comparison of different edge segmentation methods

As an experiment, we have compared the Sobel operator with

other filters such as Canny, Prewitt and Robert, as shown in Table 2.

Different edge segmentation methods are applied on 300 frames. Af-

ter segmentation, we have used PPHT to detect line markings, with-

out tracking and other refinement stages. There are 600 line markings

to be detected for these 300 frames. Table 2 proves that Canny is un-

suitable for line marking detection, with a False Positive Rate (FPR)

of 44%, and consumes much more time than other methods (94.5ms).

On the other hand, Sobel performs the best comprehensively of all

four methods. This makes it reasonable to use Sobel as a represen-

tation of edge segmentation in comparison with MSER segmentation

and our proposed method (as explained in Section 8.1.2)

8.1.2. Comparative evaluation

Conventionally, for experiments in line marking detection, ground

truth is either hand-annotated on each frame or determined by vi-

sual inspection, as performed in [3,16,19]. Researchers usually qual-

itatively judge whether or not the result for each frame fits with

ground truth. Different experimental results are presented in Tables 3

and 4 for night and daytime, respectively.

It is shown in Table 3 that, in spite of highest FNR and lowest DR,

the edge-based segmentation (method (a)) has much lower FPR than

the other two methods (only 1 and 0%). This is mainly because poor
ighting at night makes the annoying edges less visible. Besides FPR,

SER segmentation performs significantly better than edge segmen-

ation during nighttime, and method (c) refines the results of MSER

egmentation.

In Table 4 we see that MSER-based segmentation (b) generally per-

orms better than edge-based segmentation (a), especially for Clip #4,

hich represents very common situations in urban areas. In Clip #4,

ethod (b) increases the detection rate from 77% of method (a) to

5.8%, while dramatically reducing the FNR from 23 to 4.2%. How-

ver, method (b) presents some instability when it comes to other

lips (having a FPR of 30.4% and FNR of 5.1%). In response to the in-

tability of MSER segmentation, method (c) effectively refined the re-

ults of method (b). Method (c) increases the detection rate by almost

0% for Clip #2 and Clip #3, compared with method (b). Moreover,

ethod (c) decreases FPR and FNR for all four video clips.

It is noted that because of poor lighting conditions at night and

npredictable light interference of cars, the line marking detection

ystem may perform much worse than in the daytime, which is re-

ected in our experimental results in Table 3. We have determined

hat the success of line marking detection during nighttime condi-

ions is mostly affected by traffic density, and sometimes by lighting

ystems on the road.

.2. Marking recognition performance evaluation

Similar to the comparative performance evaluation (Section 8.1),

e also employed the hand-label method to qualitatively judge the

orrect recognition of the nature of line markings (color and form),

s well as false positive (FP) and false negative (FN) results. The def-

nition of false positive (FP) and false negative (FN) results in the
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Table 4

Comparative performance evaluation in (%) for line marking detection in daytime.

Clip #1 Clip #2 Clip #3 Clip #4

DR FPR FNR DR FPR FNR DR FPR FNR DR FPR FNR

Met. (a) 72.7 18.7 27.3 84.3 0 15.7 80.1 7.7 19.9 77 10.7 23

Met. (b) 69.6 14.2 30.4 89.2 5.1 10.8 84.3 5.5 15.7 95.8 9.8 4.2

Met. (c) 75.3 7.4 24.7 97.9 4.2 2.1 94.9 0 5.1 100 3.6 0

Fig. 10. Correct results in different scenarios: (a), (b) and (d) show the highway scenario with strong sunlight; (c) shows line markings occluded with shadows in highway; (e) and

(f) show the nighttime situation; (g) and (h) are in urban area, with rough road surface.

Fig. 11. False positive (FP) and false negative (FN) results in different scenarios: (a), (b, (d) and (f) show that the proposed system recognizes dashed lines as solid lines; (c) and (e)

indicate a the situation in which solid lines are recognized as dashed lines.
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arking recognition system excludes the line marking detection fail-

re and is based only on correct detection results:

• A solid line being incorrectly recognized as a dashed line gives one

FP score to dash recognition and one FN score to solid recognition.

• For a situation in which a dashed line is recognized as a solid line,

it gives one FP score to the solid line and one FN score to the

dashed line.

• Similar to solid and dashed lines, white and yellow lines being

erroneously recognized as each other also give FP and FN scores

in the same manner as above.

Fig. 10 shows the sample frames with correct recognition of line

arkings. Fig. 10(a)–(d) show different situations on a highway;

ig. 10(g) and (h) are taken from an urban area; Fig. 10(e) and (f) show

night scene in an urban area, with lighting interference. These pic-

ures show that our proposed system scheme performs well in most

eal scenarios. Table 5 shows the marking recognition performance in

eal-time video, indicating the recognition rate (RR) and false positive
ate (FPR) for the same video clips described in Table 1. As indicated

n Table 5, RR stands for recognition rate, and FPR stands for false pos-

tive rate. Since we only consider the detected results of the detection

tage, the denominator is the total number of detected line marking

the output of PPHT stage) when calculating the RR, FPR and FNR of

ach recognition item.

Fig. 11 shows that the proposed recognition scheme might in-

vitably fail in some challenging situations. Solid and dashed lines

an be erroneously recognized as each other, as can yellow and white

ines. This determines the metrics used in this part. Taking color

ecognition as an example, the false negative results of white should

e equal to the false positives of yellow in this case, and vice versa.

his is because the line markings are either solid or dashed, either

hite or yellow in most real scenarios. As we can see in Table 5,

ecognition is best achieved in a sunny highway scenario (e.g. 95.11

nd 95.33% for solid and dashed lines respectively in Clip #3, 95.63%

or solid lines in Clip #2); this is because highways are usually bet-

er constructed and have relatively less traffic density than urban
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Fig. 12. Line markings are marked as red lines, while road signs are marked as green areas. Diamonds can be successfully extracted from the road surface. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5

Hand-label comparison for line markings recognition. For video clips without one line-type

(solid, dashed, yellow or white), the two evaluation metrics for this line-type should be

indicated as N/A (not applicable).

Clip #1 Clip #2 Clip #3 Clip #4

RR FPR RR FPR RR FPR RR FPR

White 100.00 22.99 100.00 N/A 100.00 N/A 100.00 15.66

Yellow 77.01 0 N/A 0 N/A 0 84.34 0

Dash 94.60 41.85 95.63 9.61 95.11 4.67 96.88 5.24

Solid 88.15 5.40 90.39 4.37 95.33 4.89 94.76 3.12

Table 6

Testing videos for HOV recognition.

Clip #7 Clip #8

Lightening Sunny Sunny and shadowy

Location Urban Urban

Traffic condition Light Medium

Road Surface Flatly smooth Smooth to rough

Frame NO. 704 642

Frame speed 24fps 24fps

Number of HOVs 4 3

Table 7

Comparative evaluation on HOV recognition performance.

Clip #7 Clip #8

RR (%) FPR (%) FNR (%) RR (%) FPR (%) FNR (%)

HOV 89.85 2.73 10.15 65.85 4.88 34.15
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roads. In particular, when considering line marking forms, dashed

lines are more easily detected with the proposed method based on

MSER blobs; this leads to a relatively high RR and FPR.

In the differentiation of color, using a segmentation method based

on HSV space, white line recognition is surprisingly stable for all

scenarios (with 100% RR for all four videos). However, yellow lines

can be recognized as white lines because of the weak contrast with

the background, especially in poor lighting conditions. This leads to

the recognition that white lines overwhelm yellow lines in Clip #4

(with the RR of 100 and 84.4%, respectively, for white and yellow),

which is characterized by cloudy weather and rough road surface.

8.3. Road sign recognition performance evaluation

In this paper, only a fraction of road signs (diamonds) are dis-

cussed and recognized in the real-time videos we have obtained from

the Internet. The description of video clips that have been used are

summarized as Table 6.

Similar experimental methods to marking recognition have been

used to evaluate the road sign recognition performance. As shown

in Fig. 12, diamonds painted on the road surface can be successfully

extracted (as in Fig. 12 (a), (b), (d) and (e)), while in challenging situ-
tions such as cross-roads and vehicles, other objects could be recog-

ized as road signs (as shown in Fig. 12 (c) and (f)).

Table 7 shows the performance of our proposed HOV recogni-

ion scheme. Because of the proposed refinement strategy, the FPR is

uite low as we expected, while, however, missing recognition makes

he FNR high. Especially for Clip #8, where shadow interference fre-

uently affects the recognition results, 34.15% of true HOV signs are

issing out. The FPR is due mainly to other pictogram signs such as

rrows cross-walk which can be recognized as HOV signs. Several fac-

ors may affect the recognition performance of HOV signs. These fac-

ors vary from the environmental conditions such as snow, sun, the

peed of the car, to the quality of signs painting.

. Conclusion

In this paper, we presented a real-time framework able to de-

ect, an track lanes, and recognize the nature of their marking (i.e.,

ines and pictograms). To localize and detect the ROI, Maximally

table Extremal Region (MSER) technique was investigated. Then, a

hree-stage refinement algorithm was then introduced to enhance

he results of MSER step. First, we computed the Minimum Bound-

ng Rectangle of all MSER blobs. Next, we used some properties of

BRs to filter out undesirable blobs. Finally, to localize lane mark-

ng edges, we used a scanning method. To achieve the real-time re-

uirements of our system, a variant of Hough transform known as the
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rogressive Probabilistic Hough Transform (PPHT) was used in the

etection stage to detect line markings. After detection, the recog-

ition of left and right line markings (colors and forms) is performed

n the HSV color space. To recognize HOV signs, we developed new al-

orithm based on the results of MSER algorithm. At the end, Kalman

lter is used to track both ends of each detected line marking. Several

xperiments are conducted to show the efficiency of our system.
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